Book.jpg

Publications

Peer-reviewed International Journal Papers: 1 - 71

Peer-reviewed Chinese Journal Papers: 72 - 81

Patents: 82 - 85

Conference Papers and Oral or Poster Presentations: 86 - 115

  1. Jiang M, Lin Y*, Chan T, Yao Y, Zheng G, Luo S, Zhang L, Liu D, 2020. Geologic factors leadingly drawing the macroecological pattern of rocky desertification in southwest China. Scientific Reports, 10(1), 1440, doi: 10.1038/s41598-020-58550-1.

  2. Wang H, Jiang M, Yan L, Yao Y, Fu Y, Luo S, Lin Y*, 2020. Angular effect in proximal sensing of leaf-level chlorophyll content using low-cost DIY visible/near-infrared camera. Computers and Electronics in Agriculture, in press.

  3. Shi Z, Lin Y*, Li H, 2020. Extraction of urban power lines and potential hazard analysis from mobile laser scanning point clouds. International Journal of Remote Sensing, 41(9), 3411-3428, doi: 10.1080/01431161.2019.1701726.

  4. Zhou H, Wu D, Lin Y*, 2020. The relationship between solar-induced fluorescence and gross primary productivity under different growth conditions: Global analysis using satellite and biogeochemical model data. International Journal of Remote Sensing, 41(19), 7660-7679, doi: 10.1080/01431161.2020.1763507.

  5. Meng X, Lin Y*, 2020. Kinect sensor moving: Development of a low-cost technique for mobile phenotyping of plant structures. Spectroscopy and Spectral Analysis, 40(8), 2352-2357.

  6. Lin Y, Liu S, Yan L, Feng H, Zhao S, Zhao H, 2020. Improving hyperspectral estimation of nitrogen content in winter wheat by co-measurement of the polarized reflection from leaf surface. Spectroscopy and Spectral Analysis, 40(6), 1956-1964.

  7. Yan L, Li Y, Chandrasekar V, Motimer H, Peltoniemi J, Lin Y, 2020. General review of optical polarization remote sensing. International Journal of Remote Sensing, 41, 4853-4864, doi: 10.1080/01431161.2020.1724350.

  8. Guo X, Yao Y, Zhang Y, Lin Y, Jiang B, Jia K, Zhang X, Xie X, Zhang L, Shang K, Yang J, Bei X, 2020. Discrepancies in the simulated global terrestrial latent heat flux from GLASS and MERRA-2 surface net radiation products. Remote Sensing, 12(17), 2763, doi: 10.3390/rs12172763.

  9. Bei X, Yao Y, Zhang L, Lin Y, Liu S, Jia K, Zhang X, Shang K, Yang J, Chen X, Guo X, 2020. Estimation of daily terrestrial latent heat flux with high spatial resolution from MODIS and Chinese GF-1 data. Sensors, 20(10), 2811, doi: 10.3390/s20102811.

  10. Lin Y*, Hyyppä J, 2019. Characterizing ecosystem phenological diversity and its macroecology with snow cover phenology. Scientific Reports, 9(1), 15074, doi: 10.1038/s41598-019-51602-1.

  11. He N, Liu C, Piao S, Sack L, Xu L, Luo Y, He J, Han X, Zhou G, Zhou X, Lin Y, Yu Q, Liu S, Sun W, Niu S, Li S, Zhang J, Yu G, 2019. Ecosystem traits linking functional traits to macroecology. Trends in Ecology and Evolution, 34(3), 200-210, doi: 10.1016/j.tree.2018.11.004.

  12. Jia X, Yao Y, Liang S, Liu S, Fisher J, Jia K, Zhang X, Lin Y, Zhang L, Chen X, 2019. Merging the MODIS and Landsat terrestrial latent heat flux products using the multiresolution tree method. IEEE Transactions on Geoscience and Remote Sensing, 57(5), 2811-2823, doi: 10.1109/TGRS.2018.2877807.

  13. Deng L, Lin Y*, Yan L, Tesfamichael S, Billen R, Yao Y, Yao W, Chen X, Fang X, Wang C, Jing X, 2019. Urban plant phenology monitoring: Expanding the functions of widespread surveillance cameras to nature rhythm understanding. Remote Sensing Applications: Society and Environment, 15, 100232, doi: 10.1016/j.rsase.2019.05.001.

  14. Luo S, Wang C, Xi X, Nie S, Fan X, Chen H, Yang X, Peng D, Lin Y, Zhou G, 2019. Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop LAI, canopy height and above-ground biomass. Ecological Indicators, 102, 801-812, doi: 10.1016/j.ecolind.2019.03.011.

  15. Meng X, Lin Y*, Yan L, Gao X, Yao Y, Wang C, Luo S, 2019. Airborne LiDAR point cloud filtering by a multilevel adaptive filter based on morphological reconstruction and thin plate spline interpolation. Electronics, 8(10), 1153, doi: 10.3390/electronics8101153.

  16. Luo S, Wang C, Xi X, Nie S, Fan X, Chen H, Ma D, Liu J, Zou J, Lin Y, Zhou G, 2019. Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 83, 101922, doi: 10.1016/j.jag.2019.101922.

  17. Lin J, Wang M, Ma M, Lin Y, 2018. Aboveground tree biomass estimation of sparse subalpine coniferous forest with UAV oblique photography. Remote Sensing, 10, 1849, 10.3390/rs10111849.

  18. Shi Z, Kang Z, Lin Y*, Liu Y, Chen W, 2018. Automatic recognition of pole-like objects from mobile laser scanning point clouds. Remote Sensing, 10, 1891, doi: 10.3390/rs10121891.

  19. Lin Y*, Jiang M, Pellikka P, Heiskanen J, 2018. Recruiting conventional tree architecture models into state-of-the-art LiDAR mapping for investigating tree growth habits in structure. Frontiers in Plant Science, 9, 220, doi: 10.3389/fpls.2018.00220.

  20. Lin Y*, Jiang M, 2018. A new algorithm for MLS-based DBH mensuration and its preliminary validation in an urban boreal forest: Aiming at one cornerstone of allometry-based forest biometrics. Remote Sensing, 10(5), 749, doi: 10.3390/rs10050749.

  21. Jiang M, Lin Y*, 2018. Desertification in the south Junggar Basin, 2000-2009: Part I. Spatial analysis and indicator retrieval. Advances in Space Research, 62(1), 1-15, doi: 10.1016/j.asr.2017.11.038.

  22. Jiang M, Lin Y*, 2018. Desertification in the south Junggar Basin, 2000-2009: Part II. Model development and trend analysis. Advances in Space Research, 62(1), 16-29, doi: 10.1016/j.asr.2018.04.028.

  23. Ma L, Zheng G, Wang X, Li S, Lin Y, Ju W, 2018. Retrieving forest canopy clumping index using terrestrial laser scanning data, Remote Sensing of Environment, 210, 452–472, doi: 10.1016/j.rse.2018.03.034.

  24. Zhang L, Chen Y, Zhao Y, Henze D, Zhu L, Song Y, Paulot F, Liu X, Pan Y, Lin Y, Huang B, 2018. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates, Atmospheric Chemistry and Physics, 18, 339–355, doi: 10.5194/acp-18-339-2018.

  25. Luo S, Chen J, Wang C, Gonsamo A, Xi X, Lin Y, Qian M, Peng D, Nie S, Qin H, 2018. Comparative performance of airborne LiDAR height and intensity data for leaf area index estimation. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 11(1), 300-310, doi: 10.1109/JSTARS.2017.2765890.

  26. Zeng W, Fang X, Lin Y, Huang X, Yao Y, 2018. On the errors-in-variables model with inequality constraints of dependent variables for geodetic transformation. Survey Review, doi: 10.1080/00396265.2017.1396407.

  27. Zeng W, Fang X, Lin Y, Huang X, Zhou Y, 2018. On the total least-squares estimation for autoregressive model. Survey Review, 50(359), 186-190, doi: 10.1080/00396265.2017.1281096.

  28. Lin Y*, Jiang M, 2017. Maximum temperature drove snow cover expansion from the Arctic, 2000-2008. Scientific Reports, 10(7), 701-718, doi: 10.1038/s41598-017-15397-3.

  29. Lin Y*, Wei T, Yang B, Knyazikhin Y, Zhang Y, Sato H, Fang X, Liang X, Yan L, Sun S, 2017. TLS-bridged co-imputation of tree-level multifarious stem structure variables from WorldView-2 panchromatic imagery: A case study of boreal forest. International Journal of Digital Earth, 10(7), 701-718, doi: 10.1080/17538947.2016.1247473.

  30. Lin Y*, Jiang M, 2017. Towards extending terrestrial laser scanning applications in forestry: A case study of broad- and needle-leaf tree classification. Journal of Applied Remote Sensing, 11(1), 016037, doi: 10.1117/1.JRS.11.016037.

  31. Wang H, Lin Y*, Wang Z, Yao Y, Zhang Y, Wu L, 2017. Development of a low-cost 2D laser scanner based mobile terrestrial proximal sensing system for 3D plant structure phenotyping in indoor environments. Computers and Electronics in Agriculture, 140, 180-189, doi: 10.1016/j.compag.2017.06.002.

  32. Jing X, Yan L, Hu X, He L, Zhao S, Hu X, Xu H, Lin Y*, Ma A, 2017. NPP/VIIRS solar reflectance bands radiation validation based on mid-infrared reference standard on sea surface sun glint sites. Journal of Infrared and Millimeter Waves, 36(6), 694-700, doi: 10.11972/j.issn.1001-9014.2017.06.010.

  33. Yao Y, Liang S, Yu J, Chen J, Liu S, Lin Y, Fisher J, McVicar T, Cheng J, Jia K, Zhang X, Xie X, Jiang B, Sun L, 2017. A simple temperature domain two-source model for estimating agricultural field surface energy fluxes from Landsat imagery. Journal of Geophysical Research: Atmospheres, 122(10), 5211-5236, doi: 10.1002/2016JD026370.

  34. Qin H, Wang C, Pan F, Lin Y, Xi X, Luo S, 2017. Estimation of FPAR and FPAR profile for maize canopies using airborne LiDAR. Ecological Indicators, 83, 53-61, doi: 10.1016/j.ecolind.2017.07.044.

  35. Yao Y, Liang S, Yu J, Zhao S, Lin Y, Jia K, Zhang X, Cheng J, Xie X, Sun L, Wang X, Zhang L, 2017. Difference in estimating terrestrial water flux from three satellite-based Priestley-Taylor algorithms. International Journal of Applied Earth Observation and Geoinformation, 56, 1-12, doi: 10.1016/j.jap.2016.10.009.

  36. Fan A, Chen W, Liang L, Sun W, Lin Y, Che H, Zhao X, 2017. Evaluation and comparison of long-term MODIS C5.1 and C6 products against AERONET observations over China. Remote Sensing, 9(12), 1269, doi: 10.3390/rs9121269.

  37. Luo S, Wang C, Xi X, Pan F, Qian M, Peng D, Nie S, Qin H, Lin Y, 2017. Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 58, 107-117, doi: 10.1016/j.jap.2017.01.016.

  38. Rimal B, Zhang L, Keshtkar H, Wang N, Lin Y, 2017. Monitoring and modeling of spatiotemporal urban expansion and land-use/land-cover change using integrated Markov Chain cellular automata model. ISPRS International Journal of Geo-Information, 6(9), 288, doi: 10.3390/ijgi6090288.

  39. Lin Y*, Herold M, 2016. Tree species classification based on explicit tree structure feature parameters derived from static terrestrial laser scanning data. Agriculture and Forest Meteorology, 216, 105-114, doi: 10.1016/j.agrformet.2015.10.008.

  40. Lin Y*, Hyyppä J, 2016. A comprehensive but efficient framework of proposing and validating feature parameters from airborne LiDAR data for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 46, 45-55, doi: 10.1016/j.jap.2015.11.010.

  41. Lin Y*, West G, 2016. Reflecting conifer phenology using mobile terrestrial LiDAR: A case study of Pinus sylvestris growing under the Mediterranean climate in Perth, Australia. Ecological Indictors, 70, 1-9, doi:10.1016/j.ecolind.2016.06.003.

  42. Lin Y*, Zhang L, Wang C, 2016. Airborne LiDAR laser return intensity-based investigation into crown-inside? - a case study on Quercus robur trees. Journal of Applied Remote Sensing, 10(2), 026024, doi: 10.0007/1.JRS.10.026024.

  43. Lin Y*, West G, 2016. Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR. International Journal of Applied Earth Observation and Geoinformation, 50, 150-158, doi: 10.1016/j.jap.2016.01.014.

  44. Wei T, Lin Y*, Yan L, Zhang L, 2016. Tree species classification based on stem-related feature parameters derived from static terrestrial laser scanning data. International Journal of Remote Sensing, 37(18), 4420-4440, doi: 10.1080/01431161.2016.1213920.

  45. Yang B, Knyazikhin Y, Lin Y, Yan K, Chen C, Park T, Choi S, Mottus M, Rautainen M, Myneni R, Yan L, 2016. Analysis of impact of needle surface properties on estimation of needle absorption spectrum: Case study with coniferous needle and shoot samples. Remote Sensing, 8(7), 563, doi: 10.3390/rs8070563.

  46. Zhang Y, Yao Y, Lin Y, Xiang L, 2016. Satellite characterization of terrestrial drought over Xinjiang Uygur Autonomous Region of China over past three decades. Environmental Earth Sciences, 75, 6, doi: 10.1007/s12665-016-5315-0.

  47. Wang S, Huang C, Zhang L, Lin Y, Cen Y, Wu T, 2016. Monitoring and assessing the 2012 drought in the Great Plains: Analyzing satellite retrieved solar-induced chlorophyll fluorescence, drought indices, and flux measured gross primary production. Remote Sensing, 8, 61, doi: 10.3390/rs8020061.

  48. Lin Y*, 2015. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Computers and Electronics in Agriculture, 119, 61-73, doi: 10.1016/j.compag.2015.10.011.

  49. Lin Y*, Jiang M, Yao Y, Zhang L, Lin J, 2015. Automatic detection of individual trees in UAV oblique images of residential environments. Urban Forestry and Urban Greening, 14(2), 404-412, doi: 10.1016/j.ufug.2015.03.003.

  50. Lin Y*, West G, Belton D, Helmholz P, 2015. MLS-assisted validation of VHR WorldView panchromatic imagery for estimating Pinus sylvestris crown height. Remote Sensing Letters, 6(2), 125-134, doi: 10.1080/2150704X.2015.1011351.

  51. Lin Y*, Holopainen M, Kankare V, Hyyppä J, 2014. Validation of mobile laser scanning for understory tree mapping in urban forest. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 7(7), 167-3173, doi: 10.1109/JSTARS.2013.2295821.

  52. Lin Y*, Hyyppä J, 2014. Geometrically modeling of 2D scattered points: A review potential for methodically improving mobile laser scanning in data processing. International Journal of Digital Earth, 7(6), 432-449, doi: 10.1080/17538947.2013.781239.

  53. Yao Y, Liang S, Cheng J, Lin Y, Jia K, Liu M, 2014. Impacts of deforestation and climate variability on terrestrial evapotranspiration in subarctic China. Forests, 5(10), 2542-2560, doi: 10.3390/f5102542.

  54. Lin Y*, Puttonen E, Hyyppä J, 2013. Investigation of tree spectral reflectance characteristics using mobile terrestrial line spectrometer and laser scanner. Sensors – Special Issue: Sensor-based Technologies and Processes in Agriculture and Forestry, 13(7), 9305-9320, doi: 10.3390/s130709305.

  55. Lin Y*, Hyyppä J, Rosnell T, Jaakkola A, Honkavaara E, 2013. Development of a UAV-MMS-collaborative aerial-to-ground remote sensing system – A preparatory field validation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(4), 1893-1898, doi: 10.1109/JSTARS.2012.2228168.

  56. Holopainen M, Kankare V, Vastaranta M, Liang X, Lin Y, Vaaja M, Yu X, Hyyppä J, Hyyppä H, Kaartinen H, Kukko A, Tanhuanpää T, Alho P, 2013. Tree mapping using airborne, terrestrial and mobile laser scanning – A case study in a heterogeneous urban forest. Urban Forest and Urban Greening, 12(4), 546-553, doi: 10.1016/j.ufug.2013.06.002.

  57. Lin Y*, Hyyppä J, Kukko A, 2013. Stop-and-go mode: Sensor manipulation as essential as sensor development in terrestrial laser scanning. Sensors, 13(7), 8140-8154, doi: 10.3390/s130708140.

  58. Lin Y*, Hyyppä J, Kaartinen H, Kukko A, 2013. Performance analysis of mobile laser scanning systems in target representation. Remote Sensing – Special Issue: Advances in Mobile Laser Scanning and Mobile Mapping, 5(7), 3140-3155, doi: 10.3390/rs5073140.

  59. Jiang M, Lin Y*, 2013. Individual deciduous tree recognition in leaf-off aerial ultra high spatial resolution remotely sensed imagery. IEEE Geoscience and Remote Sensing Letters, 10(1), 38-42, doi: 10.1109/LGRS.2012.2191764.

  60. Lin Y*, Hyyppä J, 2012. Multiecho-recording mobile laser scanning for enhancing individual tree crown reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 50(11), 4323-4332, doi: 10.1109/TGRS.2012.2194503.

  61. Lin Y*, Hyyppä J, Antero K, Anttoni J, Kaartinen H, 2012. Tree-level height growth investigation by integrating airborne, static terrestrial, and mobile LiDAR techniques. Sensors – Special Issue: Laser sensing and Imaging, 12(9), 12798-12813, doi: 10.3390/s120912798.

  62. Lin Y*, Hyyppä J, Jaakkola A, Yu X, 2012. Three-level frame and RD-schematic algorithm for automatic recognition of individual trees from MLS point clouds. International Journal of Remote Sensing, 33(6), 1701-1716, doi: 10.1080/01431161.2011.599349.

  63. Lin Y*, Hyyppä J, Jaakkola A, Holopainen M, 2012. Characterization of mobile LiDAR data collected with multiple echoes per pulse from crowns during foliation. Scandinavian Journal of Forest Research, 8(3), 298-311, doi: 10.1080/02827581.2011.635154.

  64. Lin Y*, Hyyppä J, 2012. Automatic extraction of parallel edges based on eigenvalue analysis and collateral expansion. International Journal of Remote Sensing, 33(2), 382-395, doi: 10.1080/01431161.2010.532517.

  65. Lin Y*, Hyyppä J, Jaakkola A, 2011. Mini-UAV-borne Lidar for fine-scale mapping. IEEE Geoscience and Remote Sensing Letters, 8(3), 426-430, doi: 10.1109/LGRS.2010.2079913.

  66. Lin Y*, Hyyppä J, Jaakkola A, 2011. Combining mobile and static terrestrial laser scanners for investigation of individual crown attributes during foliation. Canadian Journal of Remote Sensing, 37(4), 359-375, doi: 10.5589/m11-045.

  67. Lin Y*, Hyyppä J, 2011. k-segments-based geometric modeling of VLS scan lines. IEEE Geoscience and Remote Sensing Letters, 8(1), 93-97, doi: 10.1109/LGRS.2010.2051940.

  68. Lin Y*, 2010. Hausdorff-based RC and IESIL combined positioning algorithm for underwater geomagnetic navigation. EURASIP Journal on Advances in Signal Processing, Article Number: 593238, doi: 10.1155/2010/593238.

  69. Jaakkola A, Hyyppä J, Kukko A, Yu X, Kaartinen H, Lehtomäki M, Lin Y, 2010. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 514-522, doi: 10.1016/j.isprsjprs.2010.08.002.

  70. Lin Y*, Hyyppä J, 2010. Geometry and intensity based culvert detection in mobile laser scanning point clouds. Journal of Applied Remote Sensing, 4, Article No. 043553, doi: 10.1117/1.3518442.

  71. Lin Y*, Jaakkola A, Hyyppä J, and Kaartinen H, 2010. From TLS to VLS: Biomass estimation at individual tree level. Remote Sensing, 2(8), 1864-1879, doi: 10.3390/rs2081864.

  72. Yu L, Lin Y*, 2019. Three-dimensional analysis of intraspecific tree competition and facilitation effects with airborne Lidar data. Journal of Northeast Forestry University, 47(7), 19-25.

  73. Lin Y*, Zhou G, Tong Q, 2019. Earth observation-oriented polarization LiDAR remote sensing. Remote Sensing Technology and Application, 34(2), 232-242.

  74. Lin Y*, Zhang M, Zhang L, Jiang M, 2019. Exploration of the angular effect in hyperspectral LiDAR spectrum-location-synchronous data collection. Remote Sensing Technology and Application, 34(2), 225-231.

  75. Lin Y*, Hyyppä J, Puttonen E, 2017. Hyperspectral LiDAR: 3D biophysichemical ecometrics. Remote Sensing Informatics, 32(1), 5-9.

  76. Wang H, Lin Y*, 2017. Mobile terrestrial proximity sensing system for 3D phenotyping of plant structure. Laser Journal, (1), 31-38.

  77. Wang M, Lin J, Lin Y, Li X, 2017. Subalpine coniferous forest crown information automatic extraction based on optical UAV remote sensing imagery. Forest Resources Management, (4), 82-88.

  78. Lin Y*, Yan L, Tong Q, 2008. Optimum trajectory planning in characteristic areas for underwater aided navigation correlation matching algorithm. Journal of Jilin University (Engineering and Technology Edition), 38(2), 439-443.

  79. Lin Y*, Yan L, Tong Q, 2008. Outlier identification in offline mode for dynamic measurements in underwater geo- magnetism navigation. Journal of Wuhan University of Technology, 30(9), 112-115.

  80. Lin Y*, Yan L, Gao W, Tong Q, 2008. Combination algorithm with improvement for two-dimensional scalar field’s simulation in aided navigation. Journal of Basic Science and Engineering, 16(4), 472-477.

  81. Gao W, Yan L, Lin Y, Xu S, 2008. A new method of transforming GPS geoid height into normal height. Journal of Basic Science and Engineering, 16(4), 518-523.

  82. Lin Y, Shi Z, Yan L. Multi-dimensional laser scanning proximal sensing system and methods for synchronous collections of object information. Patent No. 201810121327.2.

  83. Lin Y, Shi Z, Wang H, Yan L. Mobile proximity sensing system and data acquisition method for plant phenotyping. Patent No. 201810579240.X.

  84. Lin Y, Shi Z, Meng X, Yan L. Multi-dimensional laser scanning proximal sensing system for synchronous collections of object information. Utility Model Patent No. 201820212066.0.

  85. Yan L, Wang M, Lin Y, Rong Z, Tan X, Hu X, et al. Adaptive imaging method based on remote sensing image DN values-derived multivariate calibration model. Patent No. ZL201410014739.8.

  86. Lin Y*, Jiang M, Wiegand K, 2019. Laser scanning advancing 3D forest ecology. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, Jul. 29-Aug. 2, 2019.

  87. Lin Y*, 2019. Advancing a new field of 3D ecology based on LiDAR remote sensing. 2019 National Graduate Conference on Frontiers of Laser Remote Sensing and Probing, Beijing, Dec. 27-28, 2019.

  88. Lin Y*, 2019. A review of Fluorescence LiDAR (F-LiDAR) remote sensing: Enlightenment to the development of spaceborne F-LiDAR-based Earth observation in China. 2019 Symposium on Terrestrial Ecosystem Change and Future Spaceborne Satellite, Beijing, Mar. 22, 2019.

  89. Lin Y*, Jiang M, 2018. From prototype system to practical application of hyperspectral LiDAR: Invesitgation of the intraday 3D variations of tree biophysics and biochemistry. SPIE Asia-Pacific Remote Sensing Conference, Honolulu, Hawaii, Sep. 24-26, 2018.

  90. Jiang M, Lin Y, 2018. Parameter comparison for linear spectral unmixing in field hyperspectral sampling of rocky desertification. SPIE Asia-Pacific Remote Sensing Conference, Honolulu, Hawaii, Sep. 24-26, 2018.

  91. Lin Y*, Jiang M, 2017. How did annual high temperature extreme, mean temperature, and low temperature extreme chase each other around the circumpolar Arctic during 1901-2015? International Conference on Spatial Data Mining 2017, Hong Kong, China, Dec. 6-8, 2017.

  92. Lin Y*, Zhou G, Tong Q, 2017. Earth observation oriented polarization LiDAR remote sensing. High-End Forum of Polarization Remote Sensing and Applications, Beijing, China, Oct. 27-28, 2017.

  93. Zhang M, Lin Y*, 2017. The relative important of three specific climatic factors on North American breeding bird species richness. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Geospatial Week 2017, Wuhan, China, Sep. 18-22, vol. XLII-2/W7, pp. 1455-1459, doi: 10.5194/isprs-archives-XLII-2-W7-1455-2017.

  94. Sun Y, Lin Y, Hu X, Zhao S, Liu S, Tong Q, Dennis H, Yan L, 2017. The study of spectrum reconstruction based on fuzzy set full constraint and multiendmember decomposition. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Geospatial Week 2017, Wuhan, China, Sep. 18-22, vol. XLII-2/W7, pp. 551-555, doi: 10.5194/isprs-archives-XLII-2-W7-551-2017.

  95. Lin Y*, 2016. LiDAR-based investigation of boreal island ecosystems. 6th Digital Earth Summit 2016, Beijing, China, Jul. 7-8, 2016.

  96. Deng L, Shen W, Lin Y*, Gao W, Lin J, 2016. Surveillance camera-based monitoring of plant flowering phenology. International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystems (GRMSE) 2016, Hong Kong, China, Nov. 18-20, 2016; H. Yuan et al. (Eds.): GRMSE 2016, Part I, CCIS 698, pp. 273–283, doi: 10.1007/978-981-10-3966-9_31.

  97. Lin J, Wang Z, Wang Y, Lin Y, Du X, 2015. Monitoring abandoned dreg fields of high-speed railway construction with UAV remote sensing technology. ISPRS International Conference on Intelligent Earth Observing and Applications 2015, Guilin, China, Oct. 23-24, 2015; Proc. SPIE 9808, Article No. 980808, doi: 10.1117/12.2207421.

  98. Lin Y*, West G, 2014. Attempt of UAV oblique images and MLS point clouds for 4D modeling of roadside pole-like objects. SPIE Asia-Pacific Remote Sensing Conference, Beijing, China, Oct. 27-31, 2014; Proc. SPIE 9262, Article No. 92620Q, doi: 10.1117/12.2207421.

  99. Zhou H, Lin Y*, Zhao H, 2014. Investigation of the shielding effect of tree structures measured by MLS on UV-B transmission. SPIE Asia-Pacific Remote Sensing Conference, Beijing, China, Oct. 27-31, 2014; Proc. SPIE 9262, Article No. 926211, doi: 10.1117/12.2068681.

  100. Wei T, Lin Y*, Liu Y, 2014. Derivation of tree stem structural parameters from static terrestrial laser scanning data. SPIE Asia-Pacific Remote Sensing Conference, Beijing, China, Oct. 27-31, 2014; Proc. SPIE 9262, Article No. 92620Z, doi: 10.1117/12.2068571.

  101. Wang H, Lin Y*, 2014. Static terrestrial laser scanning of juvenile understory trees for field phenotyping. SPIE Asia-Pacific Remote Sensing Conference, Beijing, China, Oct. 27-31, 2014; Proc. SPIE 9262, Article No. 92620T, doi: 10.1117/12.2068661.

  102. Lin Y*, Hyyppä J, Jiang M, 2013. Fine-scale 3D Biotope mapping using ultra high resolution airborne photography and mobile laser scanning. 2013 IEEE IGARSS, Melbourne, Australia, Jul. 21-26, 2013, pp. 528-531, doi: 10.1109/IGARSS.2013.6721209.

  103. Jiang M, Lin Y*, Huang Z, 2013. Lithological mapping in the eastern section of Gangdise, Tibet using ASTER and field spectroscopy data. 2013 IEEE IGARSS, Melbourne, Australia, Jul. 21-26, 2013, pp. 2935-2938, doi: 10.1109/IGARSS.2013.6723440.

  104. Zhou H, Lin Y*, 2013. Estimation of the height of the first live branch (FLBH) from stop-and-go mobile laser scanning data. SilviLaser 2013: 13th International Conference on LiDAR Applications for Assessing Forest Ecosystems, Beijing, China, Oct. 9-11, 2013.

  105. Lin Y*, Hyyppä J, Matikainen Leena, Kaasalainen Sanna, and Ahokas Eero, 2011. Mean shift based segmentation of boats from LiDAR point clouds collected with multiple sampling densities. The LiDAR & Radar Symposium, Nanjing, China, May 26-29, 2011.

  106. Lin Y*, and Hyyppä J, 2010. Fusion of geometric models from VLS overlapping profiles. 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, Hawaii, USA, Jul. 25-30, 2010, pp. 1051-1054, doi: 10.1109/IGARSS.2010.5650072.

  107. Lin Y*, and Hyyppä J, 2010. Leaf area index (LAI) estimation based on vehicle-based laser scanning. 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, Hawaii, USA, Jul. 25-30, 2010, pp. 3422-3425, doi: 10.1109/IGARSS.2010.5650304.

  108. Lin Y*, Yan L, and Tong Q, 2008. Automatic recognition of rivers from LiDAR data by profile factor. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, Jul. 3-11, 2008, Vol. XXXVII, Part B1, pp. 245-250.

  109. Lin Y*, Liu Y, Yan L, and Tong Q, 2008. Lifting Wavelet-based Two-Dimensional Scalar Field Simulation for Underwater Navigation Application. IEEE 2008 Congress on Image and Signal Processing, Sanya, China, May 27-30, 2008, pp. 290-293, doi: 10.1109/CISP.2008.466.

  110. Lin Y*, Yan L, Liu Y, Jiang M, and Tong Q, 2008. Adaptive balancing of edge extraction in LADAR-referenced navigation over plain area. IEEE 2008 Congress on Image and Signal Processing, Sanya, China, May 27-30, 2008, pp. 348-351, doi: 10.1109/CISP.2008.310.

  111. Lin Y*, Yan L, Liu Y, and Tong Q, 2008. Offline outlier identification for dynamic measurements in underwater geomagnetism navigation. IEEE 7th World Congress on Intelligent Control and Automation, Chongqing, China, Jun. 25-27, 2008, pp. 5009-5013, 10.1109/WCICA.2008.4593740.

  112. Yan L, Lin Y*, and Tong Q, 2007. Super-resolution images reconstruction methods applied to GFE-referenced navigation system. International Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR) 2007, Wuhan, China, Nov. 15-17, 2007; Proc. SPIE 6790, Article No. 67902N, doi: 10.1117/12.750940.

  113. Lin Y*, Yan L, and Tong Q, 2007. Underwater Geomagnetic Positioning Mode Based on ICP Algorithm. IEEE 2007 International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, Dec. 15-18, 2007, pp. 2115-2120, doi: 10.1109/ROBIO.2007.4522496.

  114. Lin Y*, Yan L, and Tong Q, 2007. Improving fundamental factors among correlation matching algorithms in underwater TANS. Geoinformatics 2007, Nanjing, China, May 25-27, 2007; Proc. SPIE 6752, Article No. 675216, doi: 10.1117/12.760669.

  115. Lin Y*, Yan L, and Tong Q, 2007. Research on positioning mode of LiDAR aided navigation system over plain area. 2nd International Conference on Space Information Technology (ICSIT), Wuhan, China, Nov. 10-11, 2007; Proc. SPIE 6795, Article No. 679539, doi: 10.1117/12.774010.

Updated Sep. 1, 2020